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INTRODUCTION

Since mid-November 1966 a chess program has been
under development at the Artificial Intelligence
Laboratory of Project MAC at M.LT. This paper de-
scribes the state of the program as of August 1967
and gives some of the details of the heuristics and
algorithms employed.

Development of the program

The first step we took was to produce a simulated
chess set, whereby the computer would display the cur-
rent board and accept moves in standard chess notation
through a teletype. Routines to evaluate the board,
generate legal moves, and perform a minimax search
of a game tree were quickly added, and with further
development the program played in its first tourna-
ment in February of 1967. It played in local tourna-
ments again in March, April and May. The improve-
ment it has shown is due to additional programming
and debugging, not learning.

Table 1 summarizes the program’s performance in
tournaments. For comparison, the mean of all U. S.
tournament players is about 1800, while the mean
of all chess players is in the 800 to 1000 range. The
program wins about 80% of its games against non-
tournament players.

*The program was written primarily by the first author who

was assisted by the second author. Work reported herein
was supported in part by Project MAC, and M.IT. re-
search program sponsored by the Advanced Research Pro-
ject Agency, Department of Defense, under Office of Naval
Research Contract Number Nonr-4102(01). Reproduction
in whole or in part is permitted for any purpose of the
United States Government.

Table 1
Performance
Won Lost Drew Rating Rating
Feb 0 4 1 1243 1243
Mar 1 4 0 1330 1360
Apr 2 0 2 1450 1640
May 0 4 0 1400 (weakest

opponent was 1680)

The program is an honorary member of the United
States Chess Federation and the Massachusetts Chess
Association, under the name Mac Hack Six. In the
April amateur (non master) tournament the program
won the class D trophy.

A short history of chess playing programs

The first important paper dealing with methods
for programming chess playing programs was written
by Shannon in 1949 (1). In his paper the concept
of minimax tree search is used. In 1950, Turing
described a hand simulation of a chess program (2).
In Turing’s paper the concept of a dead position is
introduced. A dead position is one in which neither
side can immediately gain by making a capture. These
papers and two programs known as the Los Alamos
program and the Bernstein program (8) are de-
scribed in a paper by Newell, Shaw and Simon (3).
Their paper describes a chess program which deviates
from the analysis done in the previous programs in that
it employs explicit plans and goals in making its moves.
A more recent program in the Newell, Shaw and
Simon tradition is the MATER program of Simon and
Baylor (4). This program, however, deals only with
mating combinations of a few moves. The program
which is most similar to our program is described
in a Bachelor’s thesis by Alan Kotok (5). A variant
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of Kotok’s program was used by John Meccarthy
in a chess match with a Russian program (6). It is
fair to say that our program is stronger than any of
these programs in across the board play.

Approach and environment

The approach we have taken in writing the chess
program has been quite pragmatic. We did not pretend
to be writing a general problem solving system, but
addressed ourselves directly to the problems of chess.
The goal of being able to play complete games under
tournament conditions has meant that most of the
effort so far has gone into building an efficient and
effective tactical base. Therefore, consideration of
learning mechanisms, strategic planning mechanisms
and special case treatment of opening and end play
were forestalled. Book openings were recently added,
although it turned out that the computer played much
better in the openings without them than was expected.

The environment in which this program has been
developed is, we feel, more advantageous than for any
previous chess program. The machine used is the
Digital Equipment Corporation PDP-6 in the Artificial
Intelligence Laboratory of Project MAC. This machine
is equipped with a 256K Fabritek memory, a DEC 340
graphic display, a model 35 teletype, a line printer,
and four Dectape drives.

The machine was originally used on-line by one
person at a time and the teletype and graphic display
provided a high degree of interaction between the user
and the program.

The software provides for the editing, assembling
and debugging of programs and makes full use of the
interactive facilities. The mass memory and a time
sharing system were added after most of the initial
work on the program was done.

The mass memory has proved very useful in later
versions of the program, but it should be noted that
at the time of the first two tournaments the machine
had only a 16K memory.

The program was written entirely in MIDAS, a
PDP-6 macro assembly language (7). MIDAS was
chosen for this program because of the ease of con-
structing and debugging in it the complex data and
control manipulations involved in writing a high per-
formance chess program. Large economies of ~time
and memory are also effected by writing in assembly
language. The order code of the PDP-6 computer is
exceptionally well suited to assembly language coding.

The program has been edited and reassembled over
200 times and has played several hundred complete
games; consequently, those portions of the code which
have been in use for a while are extremely reliable

and the program’s performance has yielded many ideas
for improvement.

Debugging aids

The chess program contains several powerful inter-

action debugging aids. These are briefly listed below:

1) scope display of the board and game history

2) acceptance of standard chess notation input (e.g.,
P-K4)

3) scope display of evaluation at any selected node
in the game tree

4) tracing of specific move in plausible move genera-
tor, displaying all factors that went into plausi-
bility and a comment about each. (e.g., 10
points for unblocking the white queen bishop so
that it now attacks QNS5)

5) printed record of plausibility of all moves at
top level and main variation from each top level
move investigated

6) statistics on how long the computation took,
how many plausible move generations, feed-
overs and static evaluations occurred, etc. (These
terms are desicribed below.)

An outline of the program

We begin this section with a definition of some of
the important chess terms and then describe the major
components and the flow of control.

Chess terms

Ply—one play by one side. Two plies equal one com-
plete move.

Pinned—a piece is pinned if moving it exposes (dis-
covers) an attack on another piece, rendering that
piece en prise (see below). If an attack on the king
is thereby discovered, the original move is illegal.

Safe move—a legal move for a piece that does not
render it immediately en prise.

Trapped—a piece is trapped if it has no safe moves.

Isolated, backward, doubled, tripled—various pawn
structure defects. (See section on static board evaluator
for further discussion.)

Development value—refers to a piece’s range over
the board (number of squares and importance of
those squares) in a particular position.

Principal variation—the sequence of moves the com-
puter thinks most likely in a position.

Game tree—the set of all positions considered by the
program in a search, visualized in the form of a tree.
This tree is diagrammed with the ancestor positions
near the top of the page.

Game tree node—a node in the game tree represents
a position. The line leading to the node represents
the move which lead to that position. The lines down
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from the node represent moves leading to successor
positions.

En prise

A piece is en prise when it is under attack and is
inadequately defended. An example is a knight under
attack by a pawn and defended by a pawn (or any
other piece). Clearly it is in the opponent’s interest
to take the knight even though he would lose the
pawn. A more complex case is where a knight is
under attack by a bishop and rook and defended by
a pawn. In this case, it is the existence of a second at-
tacker (the rook) which makes the knight en prise. The
situation is further complicated when some of the at-
tackers or defenders are pinned. Often a complete
check for whether a piece is en prise can be quite com-
plex, so in the program only partial checks are made
at various stages. A typical determination is made by
considering the value of the piece attacked, the num-
ber of attackers, the number of defenders and the
values of the least valuable attacker and defender.
En prise checks are made to determine whether or
not the board is stable (in a dead state) and are also
made at several places in the plausible move generator.

Description of a simplified minimax search

The program is organized around a minimax search
of a game tree. The branches of the tree correspond to
alternative moves and the nodes correspond to posi-
tions. Beginning with the actual position in which it is
the machine’s turn to move, a routine known as the
plausible move generator lists each legal move and
assigns a plausibility value to each move. The moves
are then ordered according to their plausibility score
and a subset of the moves is selected for further con-
sideration. The first move of this subset is then postu-
lated and the resulting position calculated. This process
is repeated recursively until a certain depth is reached,
at which point the position is evaluated using another
routine known as the position evaluator. The position
evaluator makes use of a function called the static board
evaluator to compute a numerical value for the position.
This numerical value has the significance that a positive
value represents an advantage for white (the larger
the number, the greater the advantage), a negative
number represents an advantage for black, and zero
represents an even game.

After a position is evaluated, the value is returned
to the level above and it becomes the “best value so
far” for that position. Each other move of the subset
selected by the plausible move generator is treated in
the same manner, and when a value is obtained for
the move, the value is compared to the best value found
so far. If the value associated with the move just con-

sidered is better for the side to move than the best
value so far, the new move is remembered and its
value becomes the new best value so far. “Better”
is synonomous with “algebraically greater” if white is
the side to move and “‘algebraically less” if black is the
side to move. If two moves lead to the same value,
it is presumed that the first is slightly better because
it received a higher plausibility score. After all of the
selected moves at a position have been considered, the
best value so far and the move associated with that
value are returned to the level above. The process is
continued until a value for the actual current position
is determined. The sequence of moves which are the
best moves is called the principal variation.

Since it not feasible to consider either all moves at
any level or an indefinite number of levels, some severe
constraints are placed on the search. The basic
search (just described) starts from the current game
position and proceeds a fixed number of plies.
A position evaluator is applied to each of the end
positions of the basic search tree. This routine tests
a condition known as the feedover condition (see
below) of the position. If this condition is true, then
the plausible move generator is reapplied (up to cer-
tain limits) and the position evaluator called at the
resulting nodes. If the feedover condition is false, a
value for the position is developed by calling the static
board evaluator and by exploring all plausible cap-
tures. Plausible captures are generated in a manner
similar to regular plausible moves, but they must ap-
pear to lead to relative gain of material, either through
an actual capture or a pawn promotion. Positions re-
sulting from plausible captures are turned over to the
position evaluator. The program will explore sequences
of favorable captures or pawn promotions without a
depth or width limit. This is necessary because other-
wise pieces might be left en prise and this would result
in blunders of the first magnitude.

Should the program at any depth reach a check-
mate, stalemate, or draw by repetition of the position,
it will immediately return to the previous level with
an appropriate mate or draw value. Also the alpha-
beta algorithm may provide an exit at any level in
the tree except the topmost level.

The details of the static board evaluator, the plausi-
ble move generator, the feedover conditions and the
determination of the width of the search are all given
In the next section. The alpha-beta algorithm is de-
scribed in a later section.

The plausible move generator has three basic goals.

The plausible move generation

1) To select a subset of legal moves for inclusion
in the move tree.
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2) To order these moves so as to optimize the ad-
vantage the program receives from the alpha-beta
tree-pruning algorithm.

3) To calculate the positional and developmental
values that will decide the program’s move if
several moves lead to the same static value.

The analysis done in the plausible move generator
is done on a per move basis rather than a per position
basis—that is, for example, “this move is bad because
it blocks my bishop” rather than “the position result-
ing after this move is bad because the bishop is
blocked.” To determine the latter fact starting just with
the board position would require considerably more
processing and analysis of irrelevent details.

Numerous heuristics are available for the plausible
move generator. As is frequently the case with heuris-
tics, they may not be valid in particular situations,
therefore a program organization is required which al-
lows for the interaction of the heuristics to determine
which of them most nearly applies in the current
situation.

Very generally speaking, two types of heurstic inter-
action are used in the chess program. One type
of interaction involves enumeration of all com-
binations of facts. Such an enumeraion leads to
the familiar tree structure with the nodes of the tree
corresponding to subdecisions. Each node is dependent
upon only one fact. The size of this tree grows ex-
ponentially with the number of facts involved, severely
limiting the usefulness of this technique.

The second type of interaction uses weighted sums.
A value is assigned to each fact proportional to its
average importance, and each move is scored as the
sum of the weights of the attributes which apply to
the move. In the simplest case, the move with the high-
est score is chosen. The complexity of this process
grows linearly with the number of facts; not exponential-
ly. Also there is opportunity for a large number of
small factors to add up and sway the final decision in
a way hard to achieve with the enumerative process.
While it is true that any linear weighting process can
be simulated by an appropriate enumerative process,
for large numbers of facts the size of the enumerative
process becomes absolutely unmanageable. So for prac-
tical purposes the techniques are distinct. Linear weight-
ing methods have been used before in game playing
programs; nevertheless they have a weakness in that
they basically fail to take into account the relation-
ships that may exist between the facts. To put it an-
other way, the importance of a fact may vary depend-
ing on the position. Non-linear techniques have been
proposed to solve this problem, but chess is a game
where the relationships are so complicated and nu-

merous that it is unlikely much additional headway
could be made by making the weighting nonlinear.

The solution incorporated in the current chess pro-
gram is a nested combination of the two methods.
The top level decision process is enumerative; that
is a game tree is searched. However, selection of moves
for the game tree is controlled by a weighted decision
process, the plausible move generator. Many of the
“facts” going into the plausible move score are them-
selves enumeratively determined using such criteria as
whether the move is a capture or not, whether various
pieces are en prise or not, etc. These predicates (or in
some cases weights) are themselves decisions which
are made by enumerative or weighted sum decision pro-
cesses and so forth. The net result is that the program
is frequently able to grasp the effect of particular fea-
tures of the position that make some otherwise insignif-
icant factor more important,

Details of the major components

The major reason for the quality of the program’s
play is that considerable chess knowledge has been
programmed in. In this section much of the detail is
presented. To some extent, these details are volatile,
so what follows is more representative than definitive.

The plausible move generator

About 50 identifiable heuristics are used in comput-
ing the plausibility. Many, though, apply only in special
cases such as captures, moves with certain pieces, or
certain stages of the game.

Each square is assigned a importance during each
plausible move computation, corresponding roughly to
the estimated worth of having an additional piece bear-
ing on the square or the cost of taking away a piece
presently bearing on the square. The principal criteria
used for assigning these values include the closeness
of the square to the center of the board, its proximity
to the opponent’s king, and its occupation by one of
our pieces which is en prise. Small values are given for
occupation of the square by one of our pieces and for
its closeness to opponent’s side of the board.

The current developmental value of a piece is the
sum of the values of all the squares it attacks (can
move to in one move) plus values accumulated for
actual attacks on enemy pieces. The new developmental
value is similarily computed assuming the piece is in
its proposed new location. The difference between these
is used as a factor in the plausibility, encouraging de-
veloping moves and discouraging apositional moves.
Gains or losses in development resulting from block-
ing or unblocking the opponent’s or our pieces are
also considered in the developmental value. Of course,
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putting opponent’s pieces en prise is plausible. Further-
more, factors are added to encourage certain types of
attacks on probable weak spots (weak pawns, pinned
pieces, pieces defending other pieces, etc.). When a
capture is made, the capturing move receives the de-
velopmental value of the piece captured. Some very spe-
cialized heuristics also are employed, such as, “it is
bad to move pieces in front of center pawns on their
original squares, thereby tending to block your own
center.”

Several weaknesses were noticed in the early play
of the program and measures were taken to eliminate
them. For example, sometimes an apositional move
would receive a high value because it was an attacking
move. If this leads to gain, all is well and good; but
if the opponent can simply move away then the move
is a pointless waste of time. So, moves are scored
separately on their positionality and if this is bad these
moves are rejected if there is some other move which
leads to an equal terminal score.

Evaluation of the board

The value of the board is given by
S=B+ R+ P+ K + C, where
B is a material balance term,
R is a piece ratio change term,
P is a pawn structure term,
K is a king safety term, and
C is a center control term.
The material balance term makes use of the evalua-
tion shown in table 2.

Table 2

Piece Value Value Relative to Pawn
Pawn 128 1.

Knight 416 3.25

Bishop 448 3.50

Rook 640 5

Queen 1248 9.75

King 1536 12

The value of B is the sum of the values of the white
pieces on the board minus the sum of the values of the
black pieces on the board.

The piece ratio change term is aimed at promoting
even or near even trades when ahead and avoiding
them when behind. The ratio of white pieces to black
pieces at the current node is compared to that ratio
at the top of the tree. If the side to move is three pawns
ahead, for example, a trade of a bishop for a knight
will receive a positive piece ratio term.

R = {N/(T-1)}*%*M, where
N is the ratio of white material to black material at
the node being evaluated,

T is the ratio of white material to black material at
the top node of the tree, and

M is the material for one side at the beginning of
the game.

The ratios are evaluated using the table above,
except that the king is valued at 1 instead of 1536.

It has been pointed out that the piece ratio change
is slightly asymmetric with respect to color, but this
is of little consequence since this term only has effect
when one side is very significantly ahead.

The pawn structure term depends upon four sub-
terms, which score positively for each of the follow-
ing: tripling up of opponent’s pawns (doubling only
if isolated), the isolation of opponent’s pawns, our
own passed pawns, and the opponent’s backward pawns.
Backward pawns are considered weaker if they occur
on an open file or if the opponent has rooks or queens
on the board.

A pawn is isolated if there are no friendly pawns
on an adjacent file.

A pawn is passed if there are no enemy pawns in
front of it in the same file or an adjacent file.

A pawn is backward according to the following cri-
teria:

If it is defended by a pawn, it is not backward.

If it can be defended by a pawn in one move, (as-
suming moves through friendly pieces are permitted),
it is not backward unless it is on the second rank and

the only pawn move which would defend it is a double.

advance which would then subject it to en passant
capture.

If there is a defending pawn move blocked by an
enemy piece, if the pawn is blocked, the pawn is
backward. If an adjacent pawn is blocked, the pawn
is not backward.

Otherwise, if there are friendly pawns in adjacent files
such that the pawn would become defended if ad-
vanced far enough, the pawn is backward. Otherwise,
the pawn is not backward (i.e., it’s probably isolated).

The king safety term applies only if queens are
on the board. The king safety term (K) is eight times
the rank of the black king minus eight times the rank
of the white king.

The center control term (C) is 4-1 if there is at least
one white pawn in the center four squares and no
black pawn, —1 if there is at least one black pawn
in the center four squares and no white pawn, and
zero otherwise.

Feedover conditions

The feedover condition is true if:

1) the side to move has a piece en prise and one
of the following:
A) the side to move is in check.
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B) the en prise piece is trapped or pinned.
2) The side to move has two or more pieces en prise.
3) Both sides have exactly one piece en prise and
the piece of the side not to move is trapped or
pinned, while the piece of the side to move is
not.

The reasoning behind the first two of these condi-
tions is that while the side to move could undoubtedly
save a piece that was simply en prise he might not be
able to save two pieces, both en prise, or one if it
is trapped or pinned or if the side to move is also
constrained to escape a check. Thus the side to move
is forced to try his plausible moves and give the op-
ponent an opportunity to try to capture the en prise
material.

The reasoning behind the third condition is that the
side to move may be able to save his piece instead
of capturing the opponent’s piece. Then the opponent
will try to save his piece, which he may not be able
to do since it is trapped or pinned.

The width of the search

Like the depth, the number of moves considered at
each level is a constant tempered by some heuristics.
The constants (a different one for each level) are
usually all 6 for normal play, and are increased to
15, 15, 9, 9, 7 for tournament play, which means
that the basic width at the top two levels is 15, while
the basic width at levels three and four is 9, and the
width is 7 for all succeeding levels.

The heuristics involved all have the effect of extend-
ing the width beyond the basic setting, so the only way
that the program can fail to consider the indicated
number of moves is either that the requisite number
of moves simply do not exist or the tree-pruning algo-
rithm provides an exit from the current level.

The heuristics are:
1) All safe checks are investigated.

2) At the first or second level, all captures are
investigated.

3) An attempt is made to investigate moves of a
certain minimum number of distinct pieces. This
minimum is either half the basic width or the
number of pieces with safe moves, whichever is
less. This heuristic covers the case where all the
moves of a single piece are highly plausible (say
the queen, because it’s en prise) and the rest of
the board is not looked at.

4) Moves which lead to mate against the side to
move are ignored and not tallied against the
basic width, This guarantees that when a princi-
pal variation shows a mate, that mate is forced.

Additional features

Two algorithms for speeding up the search and three
heuristic components for improving the reliability of
the search comprise this section. The algorithms do
not affect the quality of the program’s play.

The alpha-beta tree-pruning algorithm

The alpha-beta algorithm (sometimes misnomered
heuristic) has been a standard component of every
modern game playing program. It was apparently first
used by Newell, Simon, and Shaw (3).

In the search as described above, a move is dis-
carded if it leads to a value which is worse for the
side to move than some already considered move. If
we look, however, at two levels of the tree, say moves
by white, followed by replies by black, we notice the
following: As moves by black are being explored, the
value which is going to be returned back up to the
white level (black’s best value so far) cannot be get-
ting any better for white and may be getting worse
and worse. If a white move has already been evaluated,
it is possible to check a black move not only to see
if it is worse for black than some alternative, but also
to see if it is so good for black that white would never
make the move leading to that choice for black, or in
other words, whether the move is “too good” for
black. If the move is “too good,” it is useless to consider
any more moves for black from that position and the
white move leading to that position may be discarded
immediately. Thus, only one refutation is required
to a proposed move and once it is found further search
may be discontinued. The probability of alpha-beta cut-
offs is increased by the fact that moves are investigated
in order of decreasing plausibility, and a move is
refued if it is equally good as the best so far at
the previous level.

Such a consideration leads to a tremendous speed-
up of the search, especially if what turns out to be
the best move at each position is considered first. One
of the attributes of the plausible move generator is that
it usually assigns the highest plausibility score to the
best move, so almost maximal advantages is gained.
(Rough calculation shows that the workload of the
search is reduced by a factor of about one hundred.)

The name “alpha-beta” is derived from the fact
that in the classic implementation of the algorithm, two
recursive variables are kept: alpha, the best value so
far for white, and beta, the best value so far for black.

Hash coding

One obvious way to speed up the searching process
is to avoid considering the same position twice (as
could happen through a transposition of moves). To
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this end, the program incorporates a hash table into
which an entry is made for each position considered.
The entry records not only the results of the search but
also a measure of how deep the search was which yielded
the value. If the position is reached again, and the
search in progress will not penetrate any deeper than
the stored entry, then the results are immediately ob-
taind from the hash table. Due to the tree pruning
algorithm, it is not always known exactly what the
value of a node is, but only that it is greater or less
than a certain value. Provision is made for storing this
information in the hash table. On retrieval, the value
is compared with alpha or beta (the tree prune vari-
ables) and a determination is made if further investiga-
tion is needed. Presently, the program uses a hash
table of 32,000 entries with two machine registers per
entry. An additional bonus of the hash table feature
is that it enables the program to detect draws by repeti-
tion conveniently.

Modifications to the value returned by the search

If two moves are found by the search to lead to the
same static value, the move which has the higher
plausibility score is preferred. However, in some situa-
tions, this move is not the most desirable one to make.
In order to take such cases into account, two types
of small modifications may be made to the value re-
turned from lower levels in the process of move tree
searching.

The first modification subtracts a few points if the
current move being investigated was marked as being
developmentally poor by the plausible move generator.

The second type of modification occurs only if the
principal variation that is returned is two or more plies
long. If so, and it is found that the same piece was
moved two plies down as is being moved in the cur-
rent move, various small amounts are subtracted, de-
pending on whether the piece is moved back to the
square it came from or took two moves to accomplish
a translation possible in one legal move or the position
occurs during the first eight moves of the game (moves
which are almost always devoted to rapid development).
This second type of modification was introduced to
give the program some sense of tempo and to counter
its early tendency to make senseless attacking moves
that were easily forced back.

Secondary search

A feature called secondary search was recently in-
troduced. This was done in an attempt to obtain im-
proved search depth at low cost. By increasing the
depth of the search one can prevent the program from
walking into traps which would not be recognized
with a search conducted up to the normal depth.

Moreover, one can discourage the tendency of the
program to make delaying moves which force inevita-
ble losses to occur beyond its normal lookahead. A
secondary search is employed when the normal search
results in a new candidate for the best move at the
top level. What is done is to move down the principal
variation for that move as far as this variation was
computed by the plausible move generator, and then
to conduct an additional search. The depth of this
search is usually limited to two plies, although cap-
ture and feedover conditions can increase this number.
The value produced by the secondary search is then
used in place of the value first found for the principal
variation if it is worse for the side to move.

This feature seems to improve the program’s evalua-
tion of many moves even though it is somewhat prob-
abilistic in nature, since it looks at only a small subset
of the positions that may be reached if the particular
top level move is made. It scems to cause greatest
improvement at tournament width settings when the
principal variation is more reliable.

Book openings

The program incorporates a table of opening posi-
tions and selected replies. This “book” was compiled
by two M.I.T. students, Larry Kaufman, a chess master
and the top rated U. S. Junmior player, and Alan
Baisley, a chess expert.

The lines in the book have been selected to suit the
computer’s ‘“style.” The book contains over 5000
moves; however, actual games rarely follow book for
more than approximately 10 plies. The book aids most
the computer in avoiding ‘“book traps” when playing
against experienced players.

SUMMARY
Tournament play

The computer enters the tournament under the same
rules as a human contestant. Moves are transmitted
from the tournament site directly into the PDP-6 by
teletype. A human operator is at the tournament who
observes the opponent’s move, types it in using standard
chess notation, receives the machine’s reply, plays it
on the board and operates the clock. Of the two hours
allotted to the machine for making the first fifty moves,
about 7 minutes are normally lost in these operations.

The machine never offers a draw, but if the opponent
offers one, the operator types in “draw?”. The machine
replies either “accept” or “decline.” If the machine be-
comes hopelessly lost, human operators resign for it.

Results

The program is estimated to have played in excess



808 Fall Joint Computer Conference, 1967

of 300 games in over the board competition with hu-
man players. It has played 18 tournament games. We
will quote several tournament games. These games
were played under rules calling for a minimum of 50
moves in two hours or an average of 2.4 minutes per
move. Actually, the program played most of its recent
games at about twice that rate. A single plausible move
generation takes about 80 milliseconds for a typical
position. In the early tournaments the computer did
not keep track of the time used for each move, although
this information is included with the game from a later
tournament. The time quoted is actual computer time
and does not include the operator overhead. This
later tournament also saw the introduction of the book
opening feature, which is not present in any of the other
games quoted. (To convert the times given to ma-
chine operations, multiply by the PDP-6’s approximate
speed of 200,000 operations per second.)

Computer Tournament Chess Games

Tournament 1 the Winter Amateur Tournament of
the Massachusetts State Chess Association Jan 21-22
1967

First Tournament Game Played By a Computer
White—rating 2190 Black Mac Hack VI

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

R-Q3
R-Q2
QOXR
R-Q1
B-Q5
P-QN4
Q-QB2
B-K6
RXN
QXPch
Q-KN4
QXB
Q-R4ch
B-KB5
QXRPch
Q-QRS8ch
Q-QR8
Q-Q5
K-N2
P-KR4
P-N4
P-R5
P-R6
P-R7
KXQ
P-R8=Q
Q-K6 MATE

R-K7
RXR
N-K4
Q-OB2
K-KN3
B-QN3
N-QB3
N-Q5
BXR
K-KN2
K-KR3
Q-K2
K-KN3
K-KN2
K-KB1
K-KB2
Q-QB2
K-N2
QK2
K-R3
K-N2
Q-K7
K-KB1
OXKBP
K-K2
P-QR3

1 P-KN3 P-K4

2 N-KB3 P-K5

3 N-Q4 B-QB4
4 N-ON3 B-QN3
5 B-KN2 N-KB3
6 P-QB4 P-Q3

7 N-QB3 B-K3

8 P-Q3 PXP

9 BXP N-Q2
10 PXP R-QN1
11 B-KN2 0-0

12 0-0 B-KN5
13 Q-QB2 R-K1
14 P-Q4 P-QB4
15 B-K3 PXP
16 NXP N-K4
17 P-KR3 B-Q2
18 P-ON3 B-QB4
19 QR-Q1 Q-QB1
20 K-KR2 N-KN3
21 B-KNS$5 R-K4
22 BXN PXB
23 N-K4 P-KB4
24 N-KB6ch K-KN2
25 NXB QXN
26 N-QB6 QR-K1
27 NXR RXN
28 Q-QB3 P-KB3

First Non-Loss By Computer in Tournament Play
Game 3 Tournament 1
White—1410 Black—Mac Hack VI

1 P-K4 P-K4

2 N-KB3 N-QB3
3 B-B4 N-KB3
4 N-N5 P-Q4

5 PXP N-QR4
6 B-NS5ch P-B3

7 PXP PXP

8 Q-B3 Q-Q4

9 QXQ NXQ
10 B-K2 B-KB4
11 P-Q3 B-QN5ch
12 B-Q2 BXB
13 NXB 0-0

14 P-QR3 P-KB3
15 KN-B3 QR-QN1
16 P-ON4 N-QN2
17 0-0 N-QB6
18 KR-K1 NXB
19 RXN N-Q3
20 N-K4 NXN
21 PXN B-K3
22 R-Q1 B-QBS
23 R/K2-Q2 R-QN2



24 R-Q8

25 RXRch
26 N-R4

27 N-B5

28 P-N4

29 R-Q6

30 R-Q8

31 R-KN8ch
32 N-N7ch
33 N-B5ch

RXR
K-B2
N-KN4
R-QB2
K-KN3
B-K7
BXP
K-KR4
K-KR3
K-KR4

etc. and drawn by repetition

First Game Won by Computer in Tournament Com-
petition, Game 3 Tournament 2, Massachusetts State

Championship 1967

White Mac Hack VI Black—1510

1 P-K4

2 P-Q4

3 QXP

4 Q-Q3

5 N-QB3

6 N-KB3

7 B-KB4

8 B-KN3

9 0-0-0
10 P-QR4
11 K-ON1
12 QXP/Q6
13 B-KR4
14 N-Q5

15 N-QB7ch
16 QXQ

17 Q-Q6

18 Q-Q5

19 NXKP
20 OXN!

21 R-Q8 MATE

P-QB4
PXP
N-QB3
N-B3
P-KN3
P-Q3
P-K4
P-QR3
P-QN4

B-R3ch

P-N5
B-Q2
B-N2
NXKP
QXN
N-B4
B-KB1
R-B1
B-K3
RXQ

A More Recent Game With Times For Computer
Moves, Game 2, Tournament 3 Massachusetts Spring

Amateur

White Mac Hac VI Computer Time in sec

Black Unrated
P-K4
N-KB3
B-QNS5
BXN
0-0
P-Q4
PXP
QXB
P-QB3
P-KN3
R-K1
P-KR4
B-KNS

O 00 ~-1I ANV b WN -

— e
wN=-o

BOOK
BOOK
BOOK
BOOK
BOOK
BOOK
BOOK
BOOK
BOOK
18.3
44.9
111.7
78.5

P-K4
N-QB3
P-QR3
QPXB
B-Q3
B-KN5
BXN
BXP
Q-R5
Q-K2
P-KR 4
0-0-0
P-B3

The Greenblatt Chess Program 809
14 B-KB4 74.5 P-KN4
15 BXB 45.3 QXB
16 PXP 41.5 PXP
17 Q-KBS5ch 60.5 QxQ
18 PXQ 29.1 N-B3
19 P-QB4 33.8 P-RS
20 N-QB3 77.6 R-Q7
21 P-ON3 88.0 P-R6
22 N-K4 56.0 NXN
23 RXN 433 K-Q2
24 P-KB6 19.0 R-Q3
25 P-KB7 19.0 R-B3
26 R-Qlch 25.8 R-Q3
27 RXRch 22.8 PXR
28 K-KR2 68.25 R-KBI
29 KXP 76.6 RXP
30 R-K2 22.6 P-N4
31 K-N4 30.5 R-N2
32 R-K4 28.3 P-Q4
33 PXQP 19.4 PXP
34 RK5 23.2 K-Q3
35 RXNP 14.0 RXR
36 KXR 4.5 K-K4
37 P-KB4ch 6.0 K-K5
38 P-KB5 8.5 P-Q5
39 P-B6 4.9 P-Q6
40 P-KB7 5.1 P-Q7
41 P-B8=0Q 12.1 P-Q8—=Q
42 Q-QB5ch 27.7 K-K6
43 Q-K6 29.2 K-B7
44 QXRP 42.8 Q-Q4ch
45 K-B4 20.45 Q-Q5ch
46 K-BS 14.9 Q-Q4ch
47 K-KN4 21.6 Q-KB6ch
48 K-KR4 16.3 QXKNPch
49 K-KRS5 4.7 Q-K4
50 K-R6 20.8 Q-R1
etc. finally drawn by repetition
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