



































-13 -

Program Descriptions

These descriptions are abstracted from summaries provided by the program authors.

A.IL Chess

AL Chess uses a fairly complicated algo-
rithm combining full-width search, selective
search, and a "layered" quiescence search which
behaves differently at differing levels in the search
tree. The program performs an iterative full-width
search using a modified form of the Principal-
Variation-Search (PVS) algorithm. On top of
this, it does a combined selective/quiescence
analysis. A. I. Chess has the unusual feature of
sometimes re-searching a "quiescence node" with
a full-width investigation.

The quiescence search incorporates a
detailed "threat analysis” and therefore, the pro-
gram spots many combinations long before a con-
trasting "brute force" approach would find them.
The gain (from neceding less full-width plys)
seems to exceed the loss in speed by a significant
amount.

Position evaluation starts by considering if
the side to move is threatened with pawn promo-
tion, check, or double attack, or has trapped,
pinned, or skewered pieces. Penalties similar to
swap-off scores are imposed if the position is too
deep to merit a re-search. Scores are then added
for other tactical patterns, pressure on pieces and
pawns, development, King safety, passed pawns,
pawn structure, outposts, and mobility.

Some types of endgame positions are
scored differently, by pattern recognition process-
ing. The program is alert to simplifications, and
to tactics involving passed pawns.

BeBe

In early 1980 SYS-10 tried new hardware
techniques needed for their mini/mainframe pro-
cessor in co-processors for BeBe’s CPU. Each
co-processor takes over a specific function from
the main CPU.

The first co-processor does the complete
task of move list generation. The actual unit is
divided into two processors which function in
parallel: one that finds pieces and one that calcu-
lates and stores moves. This parallelism provides
results more than 25 times faster than software.

A second co-processor performs the posi-
tion scoring function. The scorer "looks at" the
output of the move generator and uses the moves
to calculate values for piece position mobility and
co-operation. The scorer functions in parallel
with the move generator.

BeBe operates at four distinct levels:

* Software does I/O, timekeeping, book
lookup, search depth control, and overall system
control.

* Special CPU instructions do move list
sorting, internal board update for making and
unmaking moves, the alpha-beta minimax control,
keeping track of "killer moves", building bit maps
of piece locations, and some board scoring func-
tions.

* The co-processors perform move list
generation, and some of the board scoring func-
tions.

* The self-activated parallel processor

determines if either king is in check and deter-
mines the attack-defender count for any square.
Because it self-starts, the answers for both kings
are ready before the software can ask the ques-
tion.

BP

BP spends 95% of its time in board evalua-
tion and the rest on move generation and search.
Because of this, it must do a selective search. In
fact, BP docs move pruning at every level of the
search tree.

Centaur

Centaur is a new chess-playing program
with the heuristic search to consider the decisive
series of moves. The algorithm is based on the
probablic logic and uses the fuzzy value of posi-
tions. The depth of search is not limited. The
whole information about all the series of moves is
kept in RAM and is used to determine the
decisive series of moves. Centaur features a low
number of position analyzed. This is compen-
sated with thoroughness of the position evalua-
ton.









extends the depth of the search for interesting
lines. The program contains a large amount of
chess knowledge and uses hash tables which are
of especially great benefit in the end game.

For Edmonton, extra chess knowledge has
been added and the tactical strength has been
improved with adjustments to the search exten-
sion algorithms.

Merlin

The primary goal was to combine the
development of new methods with their actual use
(together with conventional methods) in a com-
petition chess program. While most of the better
programs in this domain use very little domain
knowledge, we tried to achieve improvements by
incorporating strategic and positional (rather
static) knowledge and by providing means for
handling uncertainty using meta-knowledge.

However, the use of such knowledge did
not only result in a better treatment and "under-
standing" of long-range aspects but also in slow-
ing down the program with the implication of
reducing its search. Unfortunately, the tactical
abilities depend seriously on the depth of the
search, and tactics are important in this highly
dynamic domain. Therefore, we investigated
methods for improving the tactical abilities
including dynamic knowledge explicidy, for
searching to variable depth were investigated.

The results have shown an interesting sub-
stitution of knowledge for search. Its perfor-
mance on interesting positions is impressive. The
knowledge selected (a priori) by humans showed
its best in such positions, while in the general
situation almost all knowledge is likely to be
incomplete. This instance of "generality vs.
power” is of special interest also for other
domains, emphasizing the power of searches to
discover detailed and dynamic issues.

Moby

This project is developing a multi-processor
chess program to run on a large (200 to 400 pro-
cessor) Meiko Computing Surface installed at the
University of Edinburgh as part of the Edinburgh
Concurrent Supercomputer Project (ECSP).

Meiko’s Computing Surface range of paral-
lel computers are based on INMOS T800 tran-
sputer chips. Each transputer contains a 10 MIPS

-16 -

CPU, four 20 MB/s inter-processor communica-
tions links, plus 4 KB of on-chip RAM and up to
16 MB external RAM. (The ECSP machine’s pro-
cessors currently have 4 MB RAM each.) The
Computing Surface’s processors are connected to
one another through switching chips, which
allows the machine to be electronically
reconfigured to suit the needs of individual pro-
grams.

The Moby chess program is a descendant of
Cyrus 68K, whose development was begun by
Mark Taylor and David Levy in 1985. Moby uses
conventional search techniques, but distributes the
search across the available processors in a homo-
geneous fashion, i.e. all processors are carrying
out the same type of operations, rather than some
processors doing deep “"scout” searches while oth-
ers do more complete searches guided by the
information returned by the scouts. Load balanc-
ing is achieved by processor overloading - each
processor supports several search processes,
time-slicing between them. In addition, each pro-
cessor supports a hash table manager responsible
for part of the global transposition table. One dis-
tinguished processor acts as a system master,
interacting with the user and handling file i/o
when the opening books are consulted.

Much

Much consists of several programs. The
user-interface program accepts a move from the
operator and subsequently generates evaluation
tables for the search program. The user-interface
program also handles time control, the opening
library, and the endgame library. The search pro-
gram receives the board position and evaluation
tables from the user-interface program. The
evaluation tables are tuned with the opening
played. Before each move they are incrementally
updated according to the board position (strategi-
cal evaluation of squares), but also bonus points
are provided (to menticn a few) to undeveloped
pieces (opening), the pair of Bishops in open
positions (midgame/endgame), the color of the
Pawns and the Bishop on the board (endgame).
Moreover, several plans are encouraged. The
configuration belonging to the execution of a plan
is supplied with bonus points such that every
piece and pawn involved tries to reach the plan-
ideal square. The plan as a whole, once started to
be carried out, increases the bonus points for









































